Indian Statistical Institute II Sem, Mid-Semestral Examination 2008-2009 M.Math. II year Partial Deferential Equations

Date:02-03-2009 Duration: 3 Hours Max Marks 40

In Part-A you can get maximum of 15 and in part-B you can get maximum of 25.

Part-A

- 1. Let $h_n \varepsilon R, h_n \longrightarrow 0$. For ϕ in $C_{cpt}^{\infty}(R)$ define $\phi_n(x) = \frac{\phi[x+h_n]-\phi(x)}{h_n}$. Show that $\phi_n \longrightarrow \phi^1$ in the topology for $C_{cpt}^{\infty}(R)$. [2]
- 2. Let T be a distribution on R, define $T_h \phi = T \phi_{-h}$ where $\phi_h(x) = \phi(x+h)$ for ϕ in $C^{\infty}_{cpt}(R)$. Prove $\frac{T_n - I}{h} \longrightarrow T^1$ as $h \longrightarrow 0$. [1]
- 3. Let $f: R \longrightarrow R$ be given by f = 0 on $[-\infty, 0] \cup [1, \infty], f(x) = 2$ for 0 < x < 1, x irrational and $f(x) = \frac{1}{x}$ for 0 < x < 1, x rational. Define $T\phi = \int f\phi$ for ϕ in $C^{\infty}_{cpt}(R)$. Find the distributional derivative of T.

$$[2]$$

4. (a) For a distribution T on R and a C^{∞} function ψ on R define ψT show that $(\psi T)^1 = \psi^1 T + \psi T^1$. [2]

(b) For $\psi_1, \psi_2 m^1 C^{\infty}(R)$ and T as above prove that $\psi_1((\psi_2 T) = (\psi_1 \psi_2) T$. [1]

- 5. Let $f : R \longrightarrow R$, be given by $f(x) = \frac{1}{x}$. For $\phi \in C_{cpt}^{\infty}(R)$, define $T\phi = CPV \int f\phi$, where CPV is cauchy principal value. Show that T is a distribution. [2]
- 6. Let $S: C^1[0,1] \longrightarrow \mathbb{C}$ be any linear continuous map. Show that there exists a complex measure α on [0,1] such that $S(f) = \int f^1 d \alpha$ for all $f \operatorname{in} C^{\infty}_{cpt}(0,1)$. [4]
- 7. (a) What is the meaning of distribution T = f on an open set G for some fεL¹_{loc}(G). [Here T is distribution on R and G open in R] [1]
 (b) For any ψ in C[∞](R), show that ψT = ψf on G where G, T, f are as above. [1]

Part-B

- 8. Let P be an elliptic operator on \mathbb{R}^d , u is a distribution on $\mathbb{R}^d \psi_o, \psi_1 \in C_{cpt}^{\infty}(\mathbb{R}^d)$ with $\psi_o \psi_1 = \psi_1$ Let $P(\partial_x) u \in C^{\infty}(\mathbb{R}^d)$, if $\psi_0 u \in H^{s_o}(\mathbb{R}^d)$. Show that $\psi_1 u \in H^{s_o+1}(\mathbb{R}^d)$. [5]
- 9. (a) Let $P : \mathbb{R}^d \longrightarrow C$ be any polynomial of degree m. If there are constants $C_0 > 0, C_1$ such that $C_o(1 + 1\xi 1)^m \leq [P(\xi)] + C_1$ then show that P is an elliptic polynomial. [2]

(b) Let P be any elliptic operator on \mathbb{R}^d : f is any polynomial, in one variable show that $f(P(\partial_x))$ is also an elliptic operator on \mathbb{R}^d . [2]

10. (a) If $P : \mathbb{R}^d \longrightarrow C$ is any polynomial and bounded show that P is a constant. [1]

(b) Let $P(\partial)$ be any PDO (Partial Differential Operator) on \mathbb{R}^d with constant coefficients. Let $P(i\xi) \neq o$ for $\xi \neq o$. If U is a tempered distribution such that $P(\partial)U = o$, then U is a polynomial. [2]

(c) Let P be as in (b). If $f \in C^{\infty}(\mathbb{R}^d)$ is bounded and $P(\partial)f = 0$, then f is constant. [1]

- 11. Let $P(\partial)$ be any PDO on R^d of order m with constant coefficients such that $P(i\xi) = \xi_1^{m-1}Q_0(\xi^1) + \dots + \xi_1^0Q_m(\xi^1)$ for $(\xi_1, \xi^1)\varepsilon R \times R^{d-1} = R^d$. Show that $P(\partial)$ has a fundamental solution. [10]
- 12. Find a fundamental solution for the operator $\frac{\partial}{\partial x} + i \frac{\partial}{\partial y}$ on R^2 and prove your claim. [4]
- 13. Let $f_1(x, y) = \frac{x}{x^2 + y^2}$, $f_2(x, y) = \log(x^2 + y^2)$ on $R^2 \{0\}$ show that f_1, f_2 are real analytic on $R^2 \{0\}$. [4]
- 14. Let $A : \mathbb{R}^d \longrightarrow \mathbb{R}^d$ be a linear map satisfying $A^1A = I = AA^1$. Let $f : \mathbb{R}^d \{0\} \longrightarrow \mathbb{R}$ satisfy $\Delta f = 0$. Define $g : \mathbb{R}^d \{0\} \longrightarrow \mathbb{R}$ by g(x) = f(Ax). Show that $\Delta g = 0$. [3]